

EFFECTS OF AERIAL HERBICIDE TREATMENT OF MELALEUCA ON NATIVE HABITAT RECOVERY IN THE NORTHERN EVERGLADES

Brian W. Benscoter¹, **James J. Lange**^{1,3}, Diane Harshberger¹, and Rebekah E. Gibble²

- 1. Florida Atlantic University, Davie, FL, USA
- 2. Arthur R. Marshall Loxahatchee National Wildlife Refuge, Boynton Beach, FL, USA
- 3. Fairchild Tropical Botanic Garden, Coral Gables, FL, USA

Melaleuca quinquenervia

- Highly aggressive
 - Reproductive in one year
 - 100 million seeds/tree

 Has invaded over 200,000 ha in south Florida

ars.usda.gov

A.R.M. Loxahatchee N.W.R.

High levels of invasion

Aggressive management

2009 2011

Selective Treatment Options

sflwww.er.usgs.gov/sfrsf/rooms/species/biocontrol/melaleuca.html

Hand Treatment

- Labor intensive
- o Time
- o Money
- o Disturbance

Biological Control

- Variable efficacy
- o Generally non-lethal
- Spatio-temporal dependancy

Non-Selective Treatment

Broadcast Aerial Herbicide

- o Fast
- o Cheap
- o Effective
- O Non target impacts?

Objectives

- Assess impact of aerial spraying on nontarget vegetation community
- Quantify vegetation community composition and recovery of treated stands

Sawgrass Biomass Removal Experiment (SaBRE)

- Thirty 2m x 2m plots
- Control (n=10)
- Clipped (n=10)
- Herbicide (n=10)

Control Plots

Clipped Plots

Herbicide Plots

Mean Percent Change in Species Richness

Week	Clip	Herb	Control
3	- 41	- 7	+ 9
7	- 3	- 20	+ 8
15	+ 24	- 7	+ 22
21	+ 44	- 3	+ 25
36	+ 43 ^c	- 11 ^A	+ 31 ^B

Herbicide decreases species richness

Mean Percent Change in Live Vegetation Cover

Week	Clip	Herb	Control
3	- 84	- 15	+ 1
7	- 75	- 55	+ 10
15	- 59	- 84	+ 12
21	- 51	- 82	+ 21
36	+ 10 ^B	- 74 ^A	+ 28 ^c

Herbicide reduces total live cover

Community Recovery Trajectory

Changes are long-lasting!

Objectives

- Assess impact of aerial spraying on nontarget vegetation community
- Quantify vegetation community composition and recovery of treated stands

Structural Influence

- Stand density may influence herbicide interception
- Greater herbicide impact to understory in sparse stands
- Trees occupy space long after treatment
- Increased habitat complexity

Transects

Melaleuca Adjusted % Native Live Cover

Community Diversity

Invasive Cover

Shift in Community Composition

Results: Vegetation Patterns

 Stand density-dependent effectiveness of aerial spraying

Greater impact but lower reinvasion in sparse stands

Community shifts long-lasting

Objectives

- Assess impact of aerial spraying on nontarget vegetation community
- Quantify vegetation community composition and recovery of treated stands

Monitored Treatments

- 19 Melaleuca-invaded sites received aerial herbicide application
- sawgrass marsh (n=5 south, 5 north), slough/wet prairie (n=4), and pocosin (n=5) and were found in the northern and southern parts of the refuge

Methods

- Vegetation composition, canopy density, and water depth within each site were assessed prior to and following herbicide treatment
- First surveyed in November 2013
- Treated with a glyphosate-based herbicide in January 2014
- Resurveyed in March 2015 (14 mos).

Treated islands

Results

Pre- and Post-treament Plant Communities

ANOSIM results Global R= 0.373 Significance level= 0.1%

Conclusions

- Non-target communities have extended recovery trajectories or shifts to novel communities
- Stand density-dependent effectiveness of aerial spraying
- Greater impact but lower reinvasion in sparse stands

Management Implications

- Stand density/ area minimum threshold for aerial spraying
- Adaptive management strategies
- Risk of habitat alteration must be weighed against benefits of spraying

Acknowledgments

- US Fish and Wildlife Service (USFWS)
- Refuge staff: Christen Mason, Ryan
 Hudgins, Darren Pecora, Marcie Kapsch
- Committee: Dr. Brian Benscoter, Dr. Nathan Dorn, Dr. Rebekah Gibble, and Dr. Scott Markwith

Questions?

